
Southeast Asian Mathematics Education Journal
2019, Vol. 9, No. 1

17

Exploring the Introduction of Computational Thinking in STEM Education in
Australian Schools

Dorian Stoilescu
Western Sydney University, Australia
D.Stoilescu@westernsydney.edu.au

Abstract
This paper discusses theoretical and curricular aspects of computational thinking in curriculum
and detects recent perspectives and challenges noticed in introducing computational thinking
in STEM in Australian Schools. It presents the way computational thinking is defined and
understood in curriculum documents and a set of relatively new implementations that were
designed nationally and in the state of New South Wales. This paper uses qualitative research
methods such as content analysis and text analysis. The research analyses some recent trends
in introducing computational thinking and explores these reforms that are described in the
official documents. It was noticed that although the importance of computational thinking was
highly emphasized, the documents cannot describe a consistent implementation of this set of
educational policies, as at this time implementing computational thinking is largely
underperforming. It is recommended a more systemic way of designing policies and curriculum
content for the integration of computational thinking in Australian schools is needed. Future
research needs to explore reasons for delaying these reforms of introducing computational
thinking.

Keywords: computational thinking, STEM education, Australian curriculum reforms.

Introduction

Computational thinking (CT) is a relatively new educational perspective for using computer
science in the curricula. This concept was introduced initially by Janette Wing in a brief
conference paper in 2006, as a basic educational goal to which all 21st century educators should
aspire. In that paper, computational thinking was defined as a core educational reference,
similar to literacy and numeracy. More exactly, she introduced this term as an educational
approach that “builds on the power and limits of computing processes, and on the opportunities
and the potential that is capable of offering, whether they are executed by a human or by
machine” (Wing, 2006, p.33). As such, it is a way to model various projects and problems from
a broad area based on facilities that computer support offers:

Computational methods and models give us the courage to solve problems and design systems that no
one of us would be capable of tackling alone. Computational thinking confronts the riddle of machine
intelligence: What can humans do better than computers? And, what can computers do better than
humans? Most fundamentally it addresses the question: What is computable? (p. 33)

As such, computational thinking has had an important impact on educational curriculum
and policies, as being a recent perspective introduced in the national curricula of numerous
countries and needs to be clearly understood and implemented (Aho, 2012; Hu, 2011). The
major question that underlines the expertise of computational thinking remains the previous

Exploring the Introduction of Computational Thinking
in STEM Education in Australian Schools

18

inquiry initially formulated by Wing: What can be done by computers and what still cannot
(Hu, 2011, Wing; 2006, 2008)? What happens in various areas of curricula, when we move
from the areas that use computers and abstract algorithms to various software packages
required in the school curricula? Do we need to change our school curriculum? If, yes, what
needs to be updated? Do we only need to change pedagogical approaches in all disciplines? If
yes, how can we remodel our school curriculum content in order to effectively interact with
computers? This is why computational thinking was introduced as a broader way of
understanding interactions between computer and learning activities.

Computational thinking involves understanding human interactions, patterns of problem-
solving, designing systems, and implementing decisions (Grover & Pea, 2013). Especially in
STEM (Science Technology Engineering Mathematics) education, the impact of computation
thinking is major as it includes and uses some parts of the content in these disciplines (Jona et
al., 2014).

As a developed country, Australia has been attempting to introduce new policies and
implement them across all areas of primary and secondary education. With this in mind, in this
paper, it is attempted to explore ways in which computational thinking is defined and
implemented in Australian Curriculum.

The main research questions discussed here are:
1. How is computational thinking described and implemented in the Australian curriculum?
2. What are the challenges in implementing computational thinking in Australia?

First, this research will study mostly the national curriculum and the way computational
thinking was understood. As Australia’s education system is designed and managed at state
level, the discussions will focus mostly on the New South Wales state curriculum, the most
populous state in Australia, and the other states although not discussed in this current paper,
have numerous similarities with the New South Wales implementations.

Literature Review

Similar to computational thinking, there are already components existing in ICT education
with research terms such as digital literacy, coding literacy, computational modelling, IT
literacy, IT fluency (García-Peñalvo et al., 2016). While an exhaustive discussion of terms used
in the research literature is not the purpose of this paper, we will briefly discuss some
differences between previous terms connected to computational thinking. Computational
thinking is often seen as becoming familiar with various digital technologies. However,
computational thinking is more than just learning how to access information through various
digital devices and software packages, which is the definition of digital literacy. As well, it is
different from digital fluency which explores the skilfulness of computational thinking related
to programming and people see it as a way to connect with learning programming. However,
it is not narrowly focused on creating software that is solving that problem.

Computational thinking attempts to change the way students learn. For instance, when
solving a problem, students using computational thinking paradigms might ask: “What is the
most practical way to solve this problem and how difficult is it?” or “Is any software available

Dorian Scoilescu

19

to solve this problem? If not, can the computer help to ease the solving of this problem? How?”
The learning paths are changed in other ways as well: “Can we approximate the main stages of
solving this problem with an algorithmic path?” In other words, computational thinking
attempts to rephrase the initial problem into something less difficult, through different
reductionist paths by reducing complexity, creating different scenarios, using random data, and
simulation.

Computational thinking uses various strategies to achieve its impact upon learning. For
instance, by using abstraction and decomposition, some characteristics are generalized or
emphasized. As such, the content becomes less complex and easier to get digitally processed.
By selecting specific criteria, the problems are reduced to some general types or classes of
problems and are then algorithmically approached.

Computational thinking was recently connected to teaching broader skills such as literacy
and numeracy. They are similar in the way that students need to master both in order to succeed
in today's society (Setle et al., 2012). Computational think as such needs to be delivered in a
broader path of understanding so that technological tools and algorithms are deployed in not
only STEM disciplines, but also social studies, languages, and the arts. As well, the concepts,
the tools, and the language used in manipulating these are required to be more flexible, so that
when learners decompose the problems, they will be easy to work with by various types of
learners when trying to solve complex types of problems.

Computational thinking was recently introduced in many countries such as USA, China,
Australia, Israel, and several European countries such as Netherland, Ireland, UK, and Finland.
While computational thinking implementations into national curricula are still in the early
stages, some trends have emerged. For instance, the researchers and educators attempt to
separate computational thinking as distinct from programming. For many researchers (García-
Peñalvoet al. 2016; Voogt, Fisser, Good, Mishra & Yadav, 2015) this is a major difficulty when
using computational thinking in other areas different from the traditional computer science
discipline. However, there are attempts to introduce computational thinking in other areas
different from STEM such as English, Latin, history, graphic arts, ethics (Barr and Stephenson,
2011; Seoane-Pardo, 2016; Setle et al., 2012).

Another major debate is which type of coding language should be chosen. More exactly, in
teaching computing, there are two different paths. The first of them is teaching traditional
languages such as Python, C/C++/C#, Java, Perl, Visual Basic, HTML, SQL. A major difficulty
encountered by people promoting this path is that these languages require a considerable level
of expertise for teachers willing to try them in their classrooms. As such, teachers would need
more formal classes and training in programming courses, things difficult to support in the
developing or developed countries. The second major path is the use of non-traditional
programming languages, and visual programming platforms such as Logo, Scratch, Alice,
AgentCubes, Flowgorithm, GameSalad, Kodu Games Lab, LARP, Raptor, Toon Talk, Visual
Logic, etc. Some non-traditional programming languages such as Logo and Scratch are
considered a way of playing, designing, and interacting with different objects and actors. These
programming languages put playing and user interactions in the centre of learning
programming. As such, these are not related to a rigid writing of a specific syntax.

Recently, new trends have been emerging in learning programming through emphasizing
interactions and simulations of robotics, actor-model programming languages, programming

Exploring the Introduction of Computational Thinking
in STEM Education in Australian Schools

20

microcontrollers, and programming Internet of Things technologies. Some products already
used in schools and universities are Arduino, Circuit Wizard, GENIE, PICAXE, Raspberry PI,
Micromite, Intellecta, Bee-Bots, Lego Mindstorms, WeDo (Lego-based) and Intel Edison.
These tools are receiving increasing attention as they are hands-on and require less computer
programming skills, if any.

Method

This research paper explores tendencies of introducing computational thinking revealed in
the curriculum documents. It uses qualitative research methods, mainly document analysis
(Bowen, 2009):

Documents that may be used for systematic evaluation as part of a study take a variety of forms...
Researchers typically review prior literature as part of their studies and incorporate that information in
their reports. However, where a list of analysed documents is provided, it often does not include previous
studies. Surely, previous studies are a source of data, requiring that the researcher rely on the description
and interpretation of data rather than having the raw data as a basis for analysis. The analytic procedure
entails finding, selecting, appraising (making sense of), and synthesising data contained in documents (p
27).

In the following section, the main tendencies will be summarised as they are displayed in
the official websites of the Australian Curriculum and The New South Wales Education
Standards Authority. Some attempt was made to include some previous documents on
computational thinking used in Australia and other countries such as the USA and the UK. By
using document analysis, the content is structured into major themes, categories, and case
examples specifically through content analysis (Labuschagne, 2003).

Findings

Attempts of Introducing Computational Thinking in Australian Schools
Computational thinking was introduced in all Australian states. In New South Wales, the

current state-level educational organization that establishes and monitors teaching preparation
and school standard is called the New South Wales Education Standards Authority (NESA).
They establish the criteria for designing and updating the state curriculum, for assessments and
examinations, teaching certifications and professional development, and assessments.
Australian curriculum documents clearly state that information processing is not the same as
computing (Piccinini & Scarantino, 2010). However, it is hard to segregate them and create
separate distinct curricular disciplines.

For instance, Australian curriculum attempts a clear demarcation between these two
curriculum areas as in the last two years. In New South Wales, for example, the state curriculum
has two different computing disciplines, one related to information processing (Information
Processes and Technology or IPT) and the other related to computation (Software Design and
Development or SDD). While Information Processes and Technology is taught in many schools
and remains widely spread in various areas of the curricula and in informal activities, Software
Design and Development is at the beginning stage and is not well integrated with other

Dorian Scoilescu

21

curriculum areas. The New South Wales primary education from kindergarten to year 6 and its
curriculum is structured in Learning stages from Early Stage 1 for kindergarten and three stages
for years 1 to 6. Technology is part of the Key Learning Area (KLA). Secondary education in
from year 7 to year 12 and has Stages 4, 5 and 6. From kindergarten to year 10, the national
curriculum has included Digital Technologies. In primary education, ICT technology is part of
the Science and Technology curriculum.

An important document appeared recently (NESA, 2017) about introducing computational
thinking into the New South Wales curriculum. Computational technologies are part of the
Digital Technologies curriculum for the years K to year 10 schooling. Computational thinking
is defined as the thought processes involved in formulating a problem and expressing its
solution(s) in such a way that a computer-human or machine, can effectively carry out (NESA,
2017). Digital technologies strands are structured along two main related strands:

1. knowledge and understanding, that describes information and digital systems
(hardware, network, and software); and

2. processes and production skills, that uses digital systems to create ideas and
information, and to define, design and implement digital solutions, and evaluate these
solutions and existing information systems against specified criteria.

Informally, computational thinking is not described as a programming activity. Rather, it
is described as a mental activity in modelling and formulating a problem that finally relates to
a computational solution. The solution can be carried out by a human or machine. This latter
point is important as it shows that humans can compute and learn computational thinking
without having a computer. Also, it emphasizes that computational thinking is not just about
problem-solving, but also about problem formulation and modelling. As well, the document
emphasizes the importance of critical thinking in modelling and establishing a hierarchy of
abstractions.

An important aspect of the document is that it encourages programming without pressuring
the students to learn a specific programming language. There are many voices encouraging and
promoting more coding in Australian curriculum. For instance, the Digital Careers consider
that computer programming is a requirement for successful future careers. The present guide
in computational thinking draws not only upon technology areas but also in almost every
learning area where computational thinking can be applied. In contrast, these multidisciplinary
areas of curriculum do not require the use of coding, but they do aim to develop algorithmic
and computational thinking skills to better enable students and teachers to reach a coding goal.

Challenges of Introducing Computational Thinking in Australia
We noticed that in the documents it is mentioned that nowadays, computational thinking is

still stirring important debates. One of them is whether the terms and actions of computational
thinking outcomes are often too prescriptive and too narrowly related to programming. In
addition, the terms in use are often very abstract and difficult to follow. Often, these terms and
ideas appeared to be taken from university textbooks. Alternatively, it is important to use these
terms in more non-sophisticated ways, as the curriculum is for a large number of teenagers.

Another aspect is whether computational thinking is producing new ideas? And if yes, how
do we evaluate the novelty and the importance of these new ideas? It was noticed that
computational thinking is often related to robots and sensors. Therefore, most of the

Exploring the Introduction of Computational Thinking
in STEM Education in Australian Schools

22

suggestions in computational thinking activities centres upon getting robots to move in
different directions. While this is producing an initial excitement for students, the content of
the curriculum needs to have more depth in order to have an educative value. Although it is
important to use the potential of robotics, computational thinking is offering much more for a
larger variety of fields, these robots are often expensive, thus there are schools that might not
be able to afford purchasing them.

Another concept in the process of being developed is CS + X which means computing
science plus whatever it is that you are passionate about or engaged with (National Curriculum
1, 2017). As IT systems are becoming more commonplace and all-pervasive, and with the
development of the Internet of Things and machine-to-machine, communication standards will
result in our greater reliance upon them. Thus, the areas of use for computational thinking are
extended. While computational thinking was traditionally linked with STEM disciplines, now
it touches almost all learning areas, not only the STEM disciplines. There are also important
aspects involving language, emotions, social issues, cultural sensitivities, and ethical
considerations that computational thinking needs to take into consideration when educators and
students attempt to use it in the broader disciplines.

Critical pedagogy is important in discussing the output of computational thinking. It was
noted that thoughtful teaching is important so that the problems of computational thinking do
not become irrelevant or unethical. How are computational thinking and critical thinking
related? Is computational thinking overlooking critical thinking aspects? As computational
thinking simplifies the discourse and the strategies used to solve the problem, critical thinking
aspects come as a very delicate topic where computational thinking might overlook some of
the social issues. This is why one of the major reasons for considering critical thinking
strategies when using computational thinking is the softer aspects of problems that always need
to be considered first before simplifying and modelling with digital tools. It involves issues
around the safe use of technology that need to be widely discussed. Other issues that are broadly
targeted includes ethics and social equity where the use of technology needs to be accessible
for people with various backgrounds as well having the teaching and learning of computational
thinking provided for various minorities such as aboriginals or people with disabilities. Several
researchers emphasize that the abstract tendency of processing knowledge in order to make it
“computable” has as an impact on the disembodiment and embodiment of the content involved
in computational thinking. Critical pedagogy also needs to place greater emphasis: on thinking
skills; on learning based project pedagogy; on developing problem-solving skills and
modelling. It involves encouraging and designing alternative ideas and solutions for digital
approaches.

While computational thinking is pervasive, we need to explain what computational thinking
is not. As mentioned already, computational thinking is not coding. It has some content from
algorithms, yet many people still automatically associate the two as one and demand
unreasonable levels of knowledge in coding. Another area is incorrectly identifying
technological design as computational design. Technological design often has the purpose of
obtaining a technological artefact.

The introduction of literacy around coding and ICT remains a difficult task as there are few
educators involved in computational thinking that connect them with the broad areas of
curricula. As a result, due to the shortage of educators involved in computational thinking the

Dorian Scoilescu

23

implementation is restricted to a few disciplines. As such, the amount of work involved in
computational thinking is very different and still in an early stage in Australian schools.

Conclusion and Discussions

Implementing computational thinking is an exciting opportunity for every country (Lu &
Fletcher, 2009). Although Australia is considered an advanced knowledge economy, there are
numerous barriers in encouraging enough students into STEM education and, in particular,
computational thinking remains a major challenge for educators as well as a major opportunity
(Swaid, 2015). Therefore, implementations of computation thinking are still at an emerging
stage and are considered a relatively challenging task. While it was noticed that the main
dimensions for computational thinking, such as a flexible way to encourage modelling and
interactions between human and computer devices, was clearly understood, and in order to be
well integrated into the national and state curriculum, more efforts are required to disseminate
the recent policies and interpretations on computational thinking as well as persistent efforts to
implement them across all curricula.

References

Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7),
832-835.

Australian National Curriculum 1 (2017)
http://educationstandards.nsw.edu.au/wps/portal/nesa/k-10/learning-
areas/technologies/coding-across-the-curriculum

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is
involved and what is the role of the computer science education community? ACM
Inroads, 2(1), 48–54.

Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative
Research Journal, 9(2), 27-40.

Caspersen, M. E., & Nowack, P. (2013, January). Computational thinking and practice: A
generic approach to computing in Danish high schools. In Proceedings of the Fifteenth
Australasian Computing Education Conference-Volume 136 (pp. 137-143). Australian
Computer Society,

García-Peñalvo, F. J., Reimann, D., Tuul, M., Rees, A., & Jormanainen, I. (2016). An
overview of the most relevant literature on coding and computational thinking with
emphasis on the relevant issues for teachers. Belgium: TACCLE3 Consortium.
doi:10.5281/zenodo.165123.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the
field. Educational Researcher, 42(1), 38-43.

Jona, K., Wilensky, U., Trouille, L., Horn, M. S., Orton, K., Weintrop, D., & Beheshti, E.
(2014). Embedding computational thinking in science, technology, engineering, and math
(CT-STEM). Proceedings in Future directions in computer science education summit
meeting, Orlando, FL.

Exploring the Introduction of Computational Thinking
in STEM Education in Australian Schools

24

Hu, C. (2011, June). Computational thinking: what it might mean and what we might do
about it. In Proceedings of the 16th Annual Joint Conference on Innovation and
Technology in Computer Science Education (pp. 223-227). ACM.

Labuschagne, A. (2003). Qualitative research: Airy fairy or fundamental? The Qualitative
Report, 8(1), Article 7. Retrieved 17 April 2019, from
https://nsuworks.nova.edu/tqr/vol8/iss1/7/

Lu, J. J., & Fletcher, G. H. (2009). Thinking about computational thinking. In ACM SIGCSE
Bulletin, 41(1), 26.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational
thinking through programming: What is next for K-12? Computers in Human Behavior,
41, 51-61.

Piccinini, G., & Scarantino, A. (2010). Computation vs. information processing: why their
difference matters to cognitive science. Studies in History and Philosophy of Science,
41(3), 237-246. 0-264.

New South Wales Education Standards Authority [NESA] (2017). Digital Technologies and
ICT Resources Retrieved from: http://educationstandards.nsw.edu.au/wps/portal/nesa/k-
10/learning-areas/technologies/coding-across-the-curriculum

Seoane-Pardo, A. M. (2016, November). Computational thinking beyond STEM: an
introduction to moral machines and programming decision making in ethics classroom. In
Proceedings of the Fourth International Conference on Technological Ecosystems for
Enhancing Multiculturality (pp. 37-44). ACM.

Setle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson, C., Rennert-May, C., & Wildeman, B.
(2012, July). Infusing computational thinking into the middle-and high-school
curriculum. In Proceedings of the 17th ACM annual conference on Innovation and
technology in computer science education (pp. 22-27). ACM.

Swaid, S. I. (2015). Bringing computational thinking to STEM education. Procedia
Manufacturing, 3, 3657-3662.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in
compulsory education: Towards an agenda for research and practice. Education and
Information Technologies, 20(4), 715-728.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
Wing, J. M. (2008). Computational thinking and thinking about computing. In Philosophical

Transactions of the Royal Society of London A: mathematical, physical and engineering
sciences, 366(1881), 3717-3725.Roussev, B. (2003b). Teaching introduction to
programming as part of the IS component of the business curriculum.

Acknowledgement

Part of this article was presented the Informing Science Institute Conference in July 2019
- InSITE 2019: Informing Science + IT Education Conferences: Jerusalem.

